

World Meteorological Organization Working together in weather, climate and water

WMO Integrated Global Observing Systems (WIGOS) and the QA4EO

J. Lafeuille WMO Space Programme

www.wmo.int

1. WMO in brief

- 2. Observing Systems
- 3. WMO Integrated Observing Systems
- 4. Relationship with QA4EO
- 5. Conclusions

World Meteorological Organization

WMO is the specialized agency of the United Nations for meteorology (**weather** and **climate**), operational **hydrology** and related geophysical sciences,

WMO has 188 Members (States and Territories)

➢Fosters international cooperation

Facilitates free and unrestricted exchange of information

Unique contribution to sustainable development and well-being of nations

- Within WMO, National Meteorological/Hydrological Services contribute to:
 - protection of life and property against natural and man-made disasters,
 - environment protection & management, international conventions, advising governments
 - application of meteorology and hydrology to areas such as agriculture and food security, water resources and flood management, aviation, shipping, public health, energy, public information...

The Premise behind GEOSS

WMO Global Observing Systems serving many (if not all) GEO SBAs

6

WMO establishes and coordinates global and regional networks

- Operational **observation** of meteorological, climatological, hydrological and geophysical variables,
- Operational Data exchange, management and standardization,
- Operational **Processing** of data to products, model outputs
- Technology transfer, training and research

1. WMO in brief

2. Observing Systems

- 3. WMO Integrated Observing Systems
- 4. Relationship with QA4EO
- 5. Conclusions

Global Observing Systems

Space-based,

surface-based remote sensing, and in-situ measurements

WMO observing systems:

- Global Observing System (GOS)
- Global Atmospheric Watch (GAW)
- WMO Hydrological Cycle
 Observing System (WHYCOS)

Co-sponsored systems:

- GCOS (GRUAN),
- GOOS
- GTOS

Contributions to the space-based component of the GOS

Space-based component of the Global Observing System (GOS)

WMO OMM

Surface-based observation components

- 11,000 surface-based stations including
 - Regional Basic Synoptic Networks (4000)
 - Regional Basic Climatological Networks (3000)
- 1300 Upper-air stations (radio-sondes)
- 3000 aircraft-based stations (AMDAR)

Initial Global Ocean Observing System for Climate Status of the System in February : 8055 Platforms

Suppressing ship observations for most recent 48 hours

- 1. WMO in brief
- 2. Observing Systems

3. WMO Integrated Observing Systems

- 4. Relationship with the QA4EO
- 5. Conclusions

Studying Earth as a Complex System

Overview of Weather and Climate Models and the Required Observations

WMO Integrated Global Observing Systems (WIGOS)

Top level goal:

• A comprehensive observing system satisfying the evolving observing requirements of WMO Members in a cost-effective and sustained manner

Objective : Integration of WMO observing systems and enhanced coordination with observing systems of partner organizations

Key requirements

- Quality management (User focus, quality assurance, traceability, documentation, capacity building, evaluation/improvement...)
- Interoperability through data sharing and standardization
- Optimization (Coordinated planning, platform opportunities, innovation..)

Key areas of standardization

Equatorial Crossing Times of planned polar orbiting missions in 2010/2011

Adapting to evolving requirements: The GOS evolution process

The Co-Sponsored Observing Systems

Global Ocean Observing System

IOC, WMO, UNEP, ICSU

GLOBAL TERRESTRIAL OBSERVING SYSTEM

FAO, WMO, UNEP, UNESCO, ICSU

WMO, IOC, UNEP, ICSU

WIGOS will build on existing networks and practices

- Rolling Review of Requirements to adapt systems to evolving needs
- Commission on Instruments and Methods of Observation (CIMO) has longstanding experience in defining standards & recommended practices
- Long experience in coordinating a globally interoperable telecom network (GTS), data representation definition and maintenance
- WIS data management standards and conventions (file naming convention, metadata profile, catalogue search)
- > WMO standardizing body for meteorological matters (agreement with ISO)
- WMO Technical Regulations (Manual on the GOS, Manual on Codes, Manual on GTS, Guide to Meteorological Instruments and Observations)
- Other guidance documents (Best practices for the management of the WWW operational, Guidelines of the Commission for Climatology...)

WIGOS Implementation Process

(2007)

 15th Congress endorsed the Integration of Observing Systems as a major objective in the new WMO Strategic Plan, together with WIS

(2008):

- WIGOS Concept of Operations (CONOPS)
- Initial WIGOS Development and Implementation Plan (WDIP)
- Start of Pilot and Demonstration Projects (2009)
- (Draft) Comprehensive Strategy and Action Plan for WIGOS implementation (2010)
- Finalized Strategy and Action Plan, for submission to 16th Congress (2011-2014)
- Congress Approval and Initial implementation of WIGOS *(processes in place)* (2014 +)
- Continuous evolution of WIGOS to meet evolving requirements

Pilot projects / demonstration projects

Demonstration projects in every WMO Region to raise awareness and identify impact

Pilot projects initiated to test the integration concept in different domains

- Dissemination of Ozone and Aerosol observations through the WIS
- Hydrological Applications Runoff Network
- Integration of AMDAR (observations aboard commercial aircrafts)
- Crosscutting role of the Instruments a
- Marine Meteorological and other appr
- GCOS Reference Upper-Air Network
- Global Space-based Inter-calibration (GSICS)

- 1. WMO in brief
- 2. Observing Systems
- 3. WMO Integrated Observing Systems
- 4. Relationship with QA4EO
- 5. Conclusions

WIGOS and the QA4EO

- WMO global observing systems, WIS are components of GEOSS
- QA4EO is presented as a starting point for GEOSS Quality Assurance Strategy

Convergence is being investigated between QA4EO and WMO standards and practices

Main WMO comments on QA4EO V2/V3

general points for further discussion at the workshop

- (1/2)
- Guiding principles of QA4EO (quality assurance, traceability, interoperability, use of reference standards, data availability, data exchange..) are excellent and in full agreement with WMO recommended practices
- Particularly relevant in the context of WIGOS and WIS
- However careful review would be needed if the QA4EO guidelines were to become mandatory provisions applicable to all GEO SBAs

Main WMO comments on QA4EO V2/V3

general points for further discussion at the workshop

- (2/2)
- Suggest reference to existing standards, Technical Regulations, guides and practices when available (CIMO, GOS, GTS, Codes, Climatology..)
- Avoid redundancy (within guidelines, among guidelines, with existing docs)
- Domain of application of the guidelines to be defined on case-by-case according to:
 - practicality (space-based / surface-based, network size)
 - need (taking into account existing guides or regulations)
- Clarify "status" & usage of QA4EO: guideline or requirement ? Intended status and usage have an impact on content, approval authority. (The QA4EO is approved by...QA4EO)

Conclusions

- Building on WMO's experience in global systems, WIGOS and WIS will further enhance interoperability and quality management, among WMO's and co-sponsored observing systems
- WIGOS and WIS will advance GEOSS objectives in WMO's areas of activities
- Convergence between WIGOS /WIS quality approach and QA4EO is thus encouraged when refining the QA4EO
- Expanding the scope, status, usage of QA4EO has significant impact on content, and raise a governance issue. This should be clarified to "facilitate the implementation of QA4EO".

