METROLOGICAL APPROACH FOR EO

GENERAL GUIDANCE ON A METROLOGICAL APPROACH TO FUNDAMENTAL DATA RECORDS (FDR), THEMATIC DATA PRODUCTS (TDPS) AND FIDUCIAL REFERENCE MEASUREMENTS (FRMS) – EXECUTIVE SUMMARY

Jacob Fahy
Nigel Fox
Tom Gardiner
Paul Green
Sam Hunt
Jonathan Mittaz
Bernardo Mota
Pieter De Vis
Emma Woolliams

MAY 2022
General guidance on a metrological approach to fundamental data records (FDR), thematic data products (TDP) and fiducial reference measurements (FRM) – Executive Summary

Jacob Fahy
Nigel Fox
Tom Gardiner
Paul Green
Sam Hunt
Jonathan Mittaz
Bernardo Mota
Pieter De Vis
Emma Woolliams

National Physical Laboratory
Hampton Road, Teddington, Middlesex, TW11 0LW

© NPL Management Limited, 2022

Extracts from this report may be reproduced provided the source is acknowledged and the extract is not taken out of context.
Version control

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Authors</th>
<th>Reviewed by</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>19.5.22</td>
<td>As above</td>
<td>Authors</td>
<td>First issue</td>
</tr>
</tbody>
</table>

Project Acknowledgement

IDEAS-QA4EO

This work was carried out in the frame of the Instrument Data quality Evaluation and Assessment Service - Quality Assurance for Earth Observation (IDEAS-QA4EO) contract funded by ESA-ESRIN (n. 4000128960/19/I-NS), and builds on the work of previous projects, see acknowledgments.
Table of contents
1 Introduction ... 5
2 QA4EO and Metrology ... 5
3 FDRs, TDPs and FRMs.. 6
 3.1 Definitions .. 6
4 FDRs, TDPs and FRMs: a metrological approach ... 7
 4.1 Uncertainties, errors and correlations ... 8
 4.2 Propagation of uncertainties and Earth observation processing levels 8
 4.3 Long-term data preservation and today’s applications ... 9
 4.4 A pragmatic approach .. 9
5 Methodology .. 9
 5.1 Step 1: Define the measurand and the measurement model ... 9
 5.2 Step 2: Establish traceability with a diagram ... 10
 5.3 Step 3: Evaluate each source of uncertainty and document in an effects table 12
 5.4 Step 4: Calculate the FRM/FDR/TDP and associated uncertainty .. 12
 5.5 Step 5: Documenting for different purposes ... 13
1 Introduction

Environmental observations from space-borne, air-borne, ground-based and sea-borne measurements provide essential information about the state of the environment and how it is changing. The information derived from such observations is used by service providers, commercial organisations, public authorities, and national and international organisations to support social and economic development, and to respond to global and local challenges around natural hazards, climate and biodiversity changes, and for food, water and energy security.

The Group on Earth Observations (GEO) was set up over the first three World Summits on Sustainable Development at the start of the 21st Century. GEO’s vision, given in its 2016-2025 strategy, is a future wherein “decisions and actions taken for the benefit of humankind are informed by coordinated, comprehensive and sustained Earth observations” through a GEO System of Systems (GEOSS). GEOSS links the many different Earth observing systems, whether orbital or suborbital, from governments and private organisations, into a single interconnected system that facilitates the sharing of data. GEOSS ensures “that these data are accessible, of identified quality and provenance, and interoperable to support the development of tools and the delivery of information services”.

The term ‘interoperable’ covers several concepts. Interoperable datasets can be combined and compared to obtain broader information than individual datasets. This interoperability requires that data formats are clear and based on common, well-defined concepts. It requires common geographical grids and formats. But additionally, it requires observations to be based on a common measurement scale, referenced relative to a well-understood reference. The International System of Units (SI) provides such a reference and metrological principles such as traceability to SI, documented uncertainty analysis and comparisons between different measurement references, can support the interoperability of Earth observations. It is for this reason that GEO, and its space arm, the Committee on Earth Observation Satellites (CEOS), endorsed in 2010 the Quality Assurance Framework for Earth Observation (QA4EO).

This set of reports provide a theoretical basis and a practical guide to the implementation of the principles of QA4EO, as set out in the QA4EO guidance documents, along with case study examples of the implementation of QA4EO principles.

2 QA4EO and Metrology

QA4EO realises the following principle regarding Earth Observation data quality:

‘It is critical that data and derived products are easily accessible in an open manner and have an associated indicator of quality traceable to reference standards (preferably SI) so users can assess suitability for their applications i.e. ‘fitness for purpose’.’

QA4EO defines high level processes to achieve these objectives, such as may be achieved through well-documented procedures, participation in comparisons, and uncertainty assessments, applicable to all EO data records. Traceability requires that this quality indicator be based on ‘a documented and quantifiable assessment of evidence demonstrating the level of traceability to internationally agreed (where possible SI) reference standards’. The QA4EO principle stops short of requiring SI-traceability in all circumstances, recognising that the full rigour of linkage to SI may not be viable for all applications and measurements, however, the accompanying guidelines are based on metrological
concepts adapted from guidelines of the international metrology community and a metrological approach is strongly implied.

Metrology, the science of measurement, is the discipline responsible for maintaining the SI and the associated system of measurement. The SI ensures that measurements are stable over centuries and that measurement standards are equivalent worldwide. These properties are achieved through the key principles of metrological traceability: uncertainty analysis and comparison.

Since the endorsement of QA4EO, several collaborations between metrologists and the Earth observation community developed detailed examples of how these principles can be applied in practice. Such projects addressed satellite observations directly (radiometric and active sensors), higher level products derived from satellite observations, and in situ observations used to calibrate or validate satellite observations and their derived products. The projects developed tools to document traceability, to perform uncertainty analysis, and to provide summary information on data quality so users can judge fitness for purpose of a data set. A list of projects is available at qa4eo.org/about/acknowledgements.

This set of documents describes the consolidated outcome of all these projects. It is presented here as an executive summary, as well as in greater depth in accompanying documents that outline how to apply these methods. The QA4EO website also contains case study example implementations and training material.

These documents were prepared by the National Physical Laboratory, the United Kingdom’s national metrology institute, which has been involved in these different projects.

3 FDRs, TDPs and FRMs

3.1 Definitions

The terms Fiducial Reference Measurement (FRM), Fundamental Data Record (FDR) and Thematic Data Product (TDP) were applied initially by the European Space Agency to describe metrologically-rigorous observations of specific relevance to space-based observations. While not yet formally endorsed by a committee, these terms are increasingly being used by the broader Earth observation community. Here we present possible definitions for consideration.

A fundamental data record (FDR) is a record, of sufficient duration for its application, of uncertainty-quantified sensor observations calibrated to physical units and located in time and space, together with all ancillary and lower-level instrument data used to calibrate and locate the observations and to estimate uncertainty.

Generally, FDRs will be geolocated level 1 products. The FDR is a record of the physical quantity measured by the sensor. Although some applications in reanalyses ingest level 1 products, for many applications FDRs will be used to generate TDPs.

A thematic data product (TDP) is a record, of sufficient duration for its application, of uncertainty-quantified retrieved values of a geophysical variable, along with all ancillary data used in retrieval and uncertainty estimation.

1 The FDR and TDP definitions are taken from the FIDUCEO project FCDR and CDR definitions, which were discussed and refined at a workshop. The FRM definition comes from the ESA website.
TDPs are higher level products that have been processed from FDRs, through algorithms which also often combine information from another FDR (e.g. from other satellite sensors) or from external information (such as reanalysis models).

- **Fiducial reference measurements** (FRMs) are a suite of independent, fully characterised, and traceable sub-orbital measurements that follow the guidelines outlined by the GEO/CEOS Quality Assurance framework for Earth Observation (QA4EO) and have value for space-based observations.

Thus, FRMs are the quality-assured in situ observations that can be used to calibrate and validate satellite-based sensor measurements. As ESA states ‘these FRM provide the maximum return on investment for a satellite mission by delivering, to users, the required confidence in data products, in the form of independent validation results and satellite measurement uncertainty estimation, over the entire end-to-end duration of a satellite mission.’

Note that the terms ‘Fundamental Climate Data Record’ (FCDR) and ‘Climate Data Record’ (CDR) are used for FDRs and TDPs respectively, that are also typically of multi-decadal duration and come from a series of sensors that have been harmonised to a common reference.

4 **FDRs, TDPs and FRMs: a metrological approach**

A core principle of FDRs, TDPs and FRMs is that robust metrological approaches for considering traceability and uncertainty analysis are followed. A pure metrological approach has three core components:

1. Documentation of the chain of traceability to SI
2. Systematic approach to uncertainty analysis
3. Use of comparisons to validate uncertainty statements

The uncertainty analysis should follow the principles of the Joint Committee for Guides in Metrology’s\(^2\) (JCGM) Guide to the Expression of Uncertainty in Measurement (the GUM). A GUM approach to uncertainty analysis starts with defining the measurand – that is clarifying which quantity is being measured, along with a measurement model (often an equation) that describes how the measurand is calculated from input quantities. The uncertainties associated with each term in the measurement model, and with the form of the measurement model (i.e., the extent to which that equation describes reality) are then separately considered to quantify the sources of uncertainty and any correlation structures (see below). Uncertainties are then propagated through the measurement model to evaluate a combined uncertainty associated with the measurand. The GUM approach assumes the measurement model is complete. That is, all known errors have been corrected as far as possible.

Metrologists validate uncertainty analysis and confirm traceability through comparisons. The **Mutual Recognition Arrangement** (which enables international consistency of SI-dissemination) requires regular, formal international comparisons conducted under strict rules. The QA4EO guideline 4 describes approaches to comparisons in Earth observation based on those formal metrological comparisons. Comparison exercises are commonly performed in FRM programmes to ensure

\(^2\) The JCGM is a committee of many of the world’s standardisation bodies, including ISO, IEC, and is hosted by the International Bureau of Weights and Measures (BIPM)
Uncertainty guidance – Executive Summary

consistency between different in situ observations; FRMs are also used for comparisons of satellite data sets.

4.1 Uncertainties, errors and correlations
There is a difference between the concept of ‘uncertainty’ and the concept of ‘error’. Uncertainty describes the spread of values around the measured value that can be ascribed to the measurand (conceptually the ‘true value’). The error is the difference between the true value and the measured value. Known errors can and should be corrected prior to uncertainty analysis. Unknown errors are the consequence of measurement uncertainty.

Although the magnitude of an unknown error cannot be known, it is possible to make statements about whether the error in any one measurement is correlated with the error in another measurement. Such correlations arise from these measurements having the same underlying principle or being determined from the same underlying input quantities. For example, if a calibration is performed once every \(N \) measurements, then any error in that calibration will be common to all \(N \) measured values that use that calibration in their processing. Similarly, if a slope and offset are jointly determined by fitting a straight line to the same set of measured values, then there will be an inherent correlation between the errors in the slope and the offset.

Environmental observations are affected by both instrument uncertainty and natural geophysical variability. Therefore, it is necessary to distinguish correlations due to underlying physical processes from correlations due to measurement errors. Therefore, the term ‘error correlation’ is recommended. It is ‘error correlation’ because it is the unknown errors that are correlated. The ‘uncertainty’ cannot be ‘correlated’ (or ‘random’ or ‘systematic’) because the word ‘uncertainty’ simply describes the distribution spread and is always positive.

4.2 Propagation of uncertainties and Earth observation processing levels
Two aspects of Earth observation data mean that error correlations must be considered differently from most laboratory measurements. First, data are rarely used in isolation – there is no single comparison between a satellite FDR and a single FRM. Instead, series of comparisons are made over long periods, often in different locations and between different instruments. Observations in FDRs are also combined in spatial averages and compared in long time series. Second, data are often processed through different ‘levels’ with different engineers and scientists involved in each level’s processing. Therefore, there is a need for information to be shared from level 0 to level 1 to level 2 and so on\(^3\), that provides sufficient information for reliable uncertainty analysis at higher levels, and is provided in a way that does not require higher level processing to understand all the complexity of lower levels.

Therefore, at each level of processing scientists need to think about error correlations not only between the input quantities in their own measurement model, but also in the different output quantities being determined. Each measurement will have measured values at different times and/or locations, and some measurements will also have measured values at different wavelengths/frequencies or perhaps at different viewing angles. The time, location, wavelength, and angle represent different ‘dimensions’ along which measured values may have correlated or

\(^3\) In satellite Earth observation the concept of "levels" is widely used. Level 0 represents the most raw quantity downlinked from the satellite (often a signal in ‘counts’). Level 1 processing converts these ‘counts’ into a physical quantity (e.g. top-of-atmosphere radiance or an altimeter power waveform). Level 2 processing converts the level 1 product into a geophysical quantity (e.g. ground reflectance, surface temperature, retrieved atmospheric composition or altimeter ranges and sea state conditions). Higher level processing performs further geophysical transformations (e.g. to leaf area index) and/or performs spatial and temporal averaging (regridding).
uncorrelated errors. Other ‘dimensions’ may be appropriate – for example, there may be common (correlated) errors in measured values made by a single type of instrument in an FRM network that has a few types of instruments. In such cases, instrument type would be a ‘dimension’ for error correlation.

4.3 Long-term data preservation and today’s applications

Data sets are usually prepared for three types of application: operational use, research, and long-term data preservation. Operational use involves near-real-time data sets produced for time-critical applications. Such applications often do not need robust uncertainty analysis and simple summary uncertainty information suffices. Research applications (including higher level processing) may use data sets that are reprocessed with respect to the operational dataset. The reprocessing can bring more information in and, thus, use more robust uncertainty analysis. Here information about error correlation structures are valuable, but should be provided in a summarised and perhaps simplified form to enable the most useful information to be shared efficiently. Long term data preservation is about storing operational records, and reprocessed research datasets for future applications. This means that along with the data and uncertainties, all the information necessary to understand, and reproduce, the development of the summary data sets need to be stored. Long term data preservation requires the recording of all relevant information and decisions, including information about how uncertainties and values were derived.

4.4 A pragmatic approach

The definitions of FDRs, FRMs and TDPs given above can be daunting, and the strict uncertainty analysis described in these guidelines may not be possible to be applied. This can be because of practical issues – such as limited time, expertise, or funding, or for scientific or engineering reasons – a source of uncertainty is not sufficiently well understood or accessible from the measurements that are taken, or perhaps relevant information is simply not provided by lower-level processes. The guidelines here provide an ideal approach, but practically, real FRMs, FDRs or TDPs may not be able to complete a perfect uncertainty analysis. They should, however, have statements of what assumptions and approximations have been made and should document, perhaps through a ‘maturity’ statement, which aspects have been evaluated in detail, and which have only been estimated. Sometimes comparisons will be used to estimate uncertainties, or the combination of several sources of uncertainty, rather than to validate independent uncertainty analysis. Sometimes a likely or maximum uncertainty value is estimated by expert judgement. If such decisions are well documented, particularly in documentation aimed at long-term data preservation purposes, it is acceptable to ‘be pragmatic’ about uncertainty analysis.

5 Methodology

There are five steps towards a metrological uncertainty analysis. These steps are described in further detail in other documents in this series and tools (document templates, guidelines for diagrams, format specifications and Python code modules) are available to assist with these steps.

5.1 Step 1: Define the measurand and the measurement model

Defining exactly what is being measured and provided in a data set is often more difficult than it first appears. Even for an in-situ observation, the reading on the instrument (e.g., a temperature) may be different depending on how the measurement is made, i.e., on its input quantities (e.g., through a radiance measurement, or the expansion of mercury or the resistance of a thermocouple). And beyond that, the measurand of interest may be in how that reading relates to the estimate of the underlying physical phenomenon (e.g., air temperature near surface), or some representative
phenomena (e.g., average air temperature in a grid cell of a model). Similarly, for a satellite observation, the measured signal, often in ‘counts’ needs to be converted to a physical quantity (e.g., top-of-atmosphere radiance within a spectral band). Processes such as orthorectification alter the perception of the measurand. Is an observation representing an average value within a pixel, or a peak value within a footprint? When satellite and in situ data are compared, they are likely to measure different things. For example, satellite-based measurements may relate to sea surface temperature as the top micron of the water, measured over a satellite footprint, whereas in-situ measurements may relate to sea surface temperature at a single point at a depth of a few tens of centimetres.

Furthermore, there may be questions of reference – is a range measured relative to the Earth’s ellipsoid or to its geoid, for example. At higher levels of processing, where measured values are combined with models, the measurand may be even more difficult to define. However, defining the measurand is important both to describe the dataset to users and to enable clear thinking in the uncertainty budget. Sometimes, it is necessary to do separate uncertainty analysis for different linked measurands and propagate uncertainty between these steps (e.g., the uncertainty associated with the point temperature, the uncertainty associated with the average spatial cell temperature assumed from that point, and the uncertainty associated with comparing the in situ temperature to the satellite temperature all require separate analysis).

The measurement model itself may be able to be written as an equation with an analytical function. Or it may only be defined through code, particularly if iterative processes, non-linear fitting or machine learning techniques are part of the processing. Whether or not it can be written as an equation, the processes by which input quantities are combined to determine the measurand, is known as the measurement model. It is important to realise that there will be uncertainties associated with the form of the measurement model (whether the process it describes accurately describes reality) as well as with the input quantities that are used within it.

5.2 Step 2: Establish traceability with a diagram

A visual representation of how a measurement and its traceability is achieved, along with visually representing the different sources of uncertainty, are highly valuable in assessing performance. Diagrams as described below are extremely useful mind mapping tools to help understand and communicate how a measurand is derived and to consider and share what the sources of uncertainty are. Diagrams show where terms come from and thus highlight sources of uncertainty in input quantities and in the approximations and assumptions inherent in the model.

There are different types of diagrams that can be helpful for different purposes. The guidance documents describe rules for and give examples of such diagrams. In real uncertainty analysis several of these diagrams may be used (and indeed new forms of diagram may be helpful). The ‘rules’ are there as a guide only; but following them provides a consistency between data products that can help the community’s overall understanding.

Processing diagrams are usually given in the form of a flow chart. They describe the different processes that are carried out to derive the measurand and are particularly useful either as an introduction to different steps or levels (that are themselves analysed through other types of diagram), or where it is important for processing steps to be carried out in a specific order. These are commonly used for higher level processing (TDPs rather than FDRs). For a processing diagram to be considered metrological, rather than a standard flow chart, it is important to include sources of uncertainty in the diagram, for example by considering the assumptions and approximations at each step or the origin of and uncertainties associated with auxiliary information introduced at each processing step.
Uncertainty guidance – Executive Summary

Uncertainty tree diagrams are based on equations. The measurement model is written in the centre of the diagram, often with a +0 or +\(\delta\) term added to account for the recognition that the model itself has uncertainty, and each quantity in the measurement model has a ‘branch’ showing the origin of that term (often further equations). At the edge of the diagram there are ‘twigs’ which list all the sources of uncertainty. An example uncertainty tree diagram is given in Figure 5.1.

Measurement traceability diagrams are diagrams used to show metrological traceability where instruments are calibrated against other instruments. These use two different types of symbol used to represent instruments and the quantities that the instrument measures. They are used alongside an uncertainty tree diagram to give a more intuitive overview of the measurement process (e.g., amplifier, detector, aperture, rather than equations that give amplifier gain, detector responsivity and aperture area).

Derivation diagrams are diagrams that show how a measurement model is derived. Such derivation processes can themselves introduce approximations, and derivation diagrams can show up those approximations. A good example of this is the waveform model used to fit the waveform from a satellite altimeter over open ocean. The model is fitted to the measured signals to derive quantities such as the range and significant wave height. The derivation model can highlight the assumptions built into the form of the model – e.g., in this case, that the ocean waves have a particular distribution and that the antenna pattern can be assumed to be gaussian. The actual fitting of the model would make an uncertainty tree diagram, but the derivation diagram can help define what uncertainties are associated with the +0/+\(\delta\) term in the measurement model.

![Uncertainty Tree Diagram](image)

(a) Figure 5.1 The first FIDUCEO uncertainty tree diagram from Mittaz et al 2019. Examples of other types of diagrams are given in the Process Document.
5.3 Step 3: Evaluate each source of uncertainty and document in an effects table

After the work in step 1 to specify the measurand, and in step 2 to identify where the input quantities of the measurement model all come from, it should be possible to get a list of sources of uncertainty (also known as effects). There are several things that need to be known about each effect and FIDUCEO and GAIA-CLIM used the concept of an ‘effects table’ to document, systematically the information that needs to be known about each effect.

The exact rows of an effects table will depend on the application, but there are several common requirements. This is for each source of uncertainty to identify:

- Which quantity in the measurement model it affects
- The magnitude of the uncertainty
- The shape of the probability distribution function for the uncertainty
- How the uncertainty associated with this effect is propagated to the measurand (the sensitivity coefficient)
- The error correlation shape and scale for all ‘dimensions’ (see section 4.2) that are relevant both for determining the measurand and for subsequent ‘higher level’ processing or applications that perform averages and/or comparisons

Additionally, it is valuable to document whether the analysis in the table is mature (based on sound analysis with evidence and validated through independent comparison) or very immature (based on expert judgement) or somewhere in between.

The ‘effects table’ provides a common method for recording what is known about each source of uncertainty. This is valuable to think through the uncertainty analysis and for recording for long term data preservation purposes. Using effects tables that follow the documentary templates and examples given in the guidelines will lead to consistency within the community. The tools available also include ways of storing effects tables digitally.

5.4 Step 4: Calculate the FRM/FDR/TDP and associated uncertainty

The next step involves processing the FRM, FDR or TDP through the measurement model and determining the associated uncertainties. It is common for the processes gone through in the previous steps to assist with refining the measurement model, and thus how the FRM, TDP or FDR is calculated. The analysis may also improve quality control and verification processes and lead to improved harmonisation of long term data sets that combine data from different sensors.

The uncertainty may be calculated separately for each individual observation (at different times, locations, and perhaps wavelengths, angles etc), or some examples may be analysed more thoroughly to provide a look-up-table that enables faster processing of the full data set. The choice will depend on processing times and data volumes.

There are two ways of processing uncertainties that are described in the GUM. Uncertainties may be processed using Monte Carlo methods (as in an ensemble analysis), or through the Law of Propagation of Uncertainties (a linearised Taylor expansion often recognised as ‘the square root of the sum of the squares’, although when there is error correlation a full covariance matrix is needed). Monte Carlo can provide better results for non-linear models and is the often the only option where the processing cannot be written analytically (e.g., in neural networks or iterative processes), however, it is computationally expensive and does not provide easy access to the importance of different sources.
of uncertainty. A hybrid approach can use Monte Carlo analysis to evaluate sensitivity coefficients that are propagated through the law of propagation of uncertainties or used in look up tables.

5.5 Step 5: Documenting for different purposes
For operational use, the outcome of the uncertainty analysis may be a simple look up table. For research applications and higher-level processing, simplified information needs to be given, e.g., providing combined uncertainties for effects that lead to uncorrelated (random) errors, that lead to correlated (systematic) errors and that lead to ‘in between’ errors (structured). For long-term data preservation, all information should be stored along with complete documentation.